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Abstract

The Oculomotor Geometry Reasoning Engine (OGRE) was proposed to model eye movements and visual working memory
during problem solving in geometry. OGRE postulates that geometrical elements from diagrams are added to visual working
memory when they are scanned. Newly-added elements overwrite elements already in memory. The model was applied to
eye-movement patterns of three subjects: two geometry experts and one non-expert. Their eye movements and verbal protocols
were recorded as they solved geometry problems posed with diagrams. Subjects used highly redundant eye-movement patterns
with multiple rescans of the same geometrical elements. OGRE’s model of visual memory provided a good fit for the distribution
of times between rescans. The model was used to estimate the size of visual working memory used in geometry. The estimates
varied as a function of both problems and subjects, with means and standard deviations for each subject being: 5.3 + 1.4, 4.0+ 0.9

and 4.7 + 1.6. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

Solving geometry problems is a complex process. The
solver must (i) read the text; (ii) construct a diagram, if
one is not provided; (iii) search this diagram for famil-
iar patterns; (iv) retrieve relevant facts from memory;
and (iv) make inferences, including numerical computa-
tions, that eventually lead to solution. This multifaceted
process can proceed so quickly that it cannot be ob-
served directly with currently available technology.
Spoken or written protocols have limited value because
only the inferences that reach ‘awareness’ can be re-
ported. Some of the inferences reported in the protocol
may be the result of several smaller steps on which the
solver cannot verbally remark without disrupting the
train of thought.

Fortunately, there is a type of protocol that has the
potential of circumventing these obstacles. When prob-
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lems are presented visually, as diagrams, the problem
solver’s eye movements may provide the experimenter
with a window on the mind. Eye-movement protocols
have some clear advantages over conventional written
or spoken protocols. It does not require any additional
effort or training on the part of the subject and rather
than being disruptive, the eye movements are an inte-
gral part of the problem-solving process.

Using eye movements to infer cognitive and percep-
tual processes, however, is not without difficulties.
Viviam (1990) discussed many common problems inher-
ent in this type of research, and concluded that the only
possibly useful approach to interpreting eye-movement
data is to work within a specific theoretical framework.
Here, we describe such a theoretical framework devel-
oped for the task of solving geometry problems posed
with diagrams. Before our model is presented, it is
useful to discuss some of the highlights of the relevant
research on problem solving, visual working memory
and eye movements. The following review is not meant
to be comprehensive. It is meant to illustrate the variety
of approaches used in the field.
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1.1. Background

A popular modern approach to modeling human
problem solving is the use of ‘production systems’. The
most developed of such systems is Anderson’s ACT-R
family of models (Anderson, 1993). Productions are
rules, consisting of conditions and actions, which are
organized in a hierarchical goal structure. Problem
solving involves matching items in declarative memory
with elements in the condition portion of the produc-
tions. When a match is found, the production ‘fires’,
that is, the action part of the matching production is
performed. This process is repeated until the solution is
reached.

Production-based models do fairly well in predicting
behavior under some circumstances. However, detailed
analyses of protocols show that problem solving rarely
proceeds in a hierarchical, goal-directed or determinis-
tic manner of production-system models. Problem solv-
ing seems to be more probabilistic, as shown, for
example, by Suppes and Sheehan (1981), using 1455
computer-based proofs in set theory.

The probabilistic nature of problem solving can also
be supported with eye-movement data. For example,
examination of the eye-movement patterns of subjects
doing column arithmetic exercises shows that they did
not follow the simple right-to-left, top-to-bottom al-
gorithm exactly, despite being specifically reminded to
do so (Suppes, Cohen, Laddaga, & Floyd, 1983). Over
30% of fixations were backtracks, skips ahead, and
spurious operations that did not fit the algorithm at all.
The frequency of such anomalous fixations was surpris-
ingly high: 8-16% for adult subjects and 17-36% for
children.

The eye-movement patterns observed during column
arithmetic, reading (Epelboim, Booth, & Steinman,
1994), mental animation of mechanical diagrams
(Hegarty, 1992), as well as other tasks, support the
hypothesis that human reasoning, even during the exe-
cution of very simple algorithms, is highly probabilistic
(Suppes, 1981). People forget their place in the al-
gorithm, they forget the stimulus just observed, and
they forget an intermediate result and must repeat a
step or even start over from the beginning. Sometimes,
they recognize a familiar pattern and skip using the
algorithm altogether. Problem solving must be highly
probabilistic because of the continually active nature of
human memory and perception.

The modern concept of working memory that has a
limited capacity was developed primarily by Baddeley
(1986). According to Baddely, the working memory
system temporarily stores information during perfor-
mance of complex cognitive tasks. This concept of
working memory is distinguished from long-term mem-
ory and also very short-term, or iconic memory (mostly
attributed to visual persistence). The items in working

memory remain long enough to be useful in the perfor-
mance of at least one mental operation.

Working memory consists of the ‘central executive’,
which performs the calculations, the ‘phonological
loop’, which maintains speech-based information, and
the ‘visuospatial sketchpad’, which sets up and main-
tains visual imagery. The mechanisms for forgetting in
Baddeley’s model is decay over time and modality
specific interference. The phonological loop is the most
extensively investigated component of this model.
Much less is known about the visuospatial sketchpad
and the central executive — the components that must
be active in many kinds of problem solving, including
geometry.

The estimated size of visual working memory de-
pends on specific experimental conditions, but all esti-
mates are relatively small, i.e. fewer than 10 items. For
example, Luck and Vogel (1997) showed that humans
can remember about four visual items regardless of
whether the items represented single features, e.g. col-
ors, or conjunctions of features, e.g. color 4 orienta-
tion + size. They concluded that visual working
memory ‘stores integrated objects rather than individ-
ual features’. A similar estimate was obtained by
Lachter and Hayhoe (1995) who found that perfor-
mance of subjects making judgments about the spatial
arrangement of a sequence of dots dropped radically
when more than four dots were used (see also Hayhoe,
Bensinger, & Ballard, 1998).

A larger estimate for the size of visual working
memory was obtained by Glassman, Garvey, Elkins,
Kasal, and Couillard (1994) who found that both hu-
mans and rats remembered the locations of about 14
out of 17 arms of a radial maze. When the probability
of guessing was taken into account, these results led to
estimates of the size of visuo-spatial working memory
that were on the high end of ‘magic number’ 7+ 2
described by Miller (1956), in his classic review of
findings on short-term-memory and attention.

There are also a few studies that estimate the size of
visual memory to be just one item. Broadbent and
Broadbent (1981), for example, showed that subjects
can reliably remember only one item when stimuli are
meaningless shapes and the subjects are prevented from
phonological encoding, i.c. naming the shapes on the
basis of their resemblance to familiar objects. They
argued that studies which reported larger estimates of
the size of visual working memory, reflected the sub-
jects’ use of phonological encoding. Walker, Hitch, and
Duroe (1993), however, used a similar task to show that
similarity between the most recent shape and earlier
shapes had a deleterious effect on recall of the earlier
items, suggesting that at least some information about
previous items is retained in visual working memory.

Estimates of the size of visual working memory de-
scribed so far used tasks in which subjects were specifi-
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cally asked to remember sets of objects. In contrast,
Ballard, Hayhoe, and Pelz (1995) estimated the size of
visual working memory actually used in a visuomotor
task. They asked subjects to copy meaningless models
made of colored blocks and recorded their eye move-
ments. They found that subjects tended to look at the
model about twice per block, at least as the first couple
of blocks were being put in place. The authors con-
cluded that subjects used the visual display to extend
their visual working memory. When preparing to add a
block, subjects looked at the model once to decide the
color of this block, and a second time to find where this
block should go in the copy. The authors concluded
that the subjects could remember only one feature —
either the color or the location of one block, and that
‘visual representations are limited and task-dependent’.

Despite the limitations of visual representations,
many problems are much easier to solve when pre-
sented visually rather than verbally. Larkin and Simon
(1987) showed the superiority of diagrammatic repre-
sentations formally by comparing simulated problem-
solving programs that used diagrammatic-like or
verbal-like data structures as input. Simulations showed
that in a number of tasks, including geometry, diagram-
matic data structures led to programs with greater
computational efficiency. Larkin and Simon (1987) con-
cluded that diagrams ‘can be better representations not
because they contain more information, but because the
indexing of this information can support extremely
useful and efficient computational processes’. They
were referring to human abilities to make perceptual
inferences and to shift attention quickly and
effortlessly.

Larkin and Simon (1987) suggested that mental im-
ages, although less detailed, can be used as effectively
as external diagrams. The use of mental images may be
possible for simple problems where the solution can be
reached by focusing attention on only one element at a
time (for example, simple flow charts). In more complex
problems, such as geometry problems used in our ex-
periment, the problem-solver must keep in mind not
just a single feature of the diagram, but also a set of
relationships among the various parts of the diagram.
The latter types of problems should be more difficult to
solve without a visible diagram because it has been
shown repeatedly that humans do better when they can
scan visual scenes than when they have to maintain
mental images in memory. One example of this phe-
nomenon is the block-copying task described above.
Another example was observed by Epelboim et al.
(1995), who found that when subjects looked at a
sequence of targets, the subject who used visual search
instead of remembering the locations of the targets,
performed faster and benefited more from practice than
the other three subjects who memorized target loca-
tions. Further evidence that mental images are unreli-

able comes from experiments that show that large
changes in the visual scene can occur during blinks,
saccades or other visual transients without the observer
noticing the change (e.g. O’Regan, Rensink, & Clark,
1999).

1.2. Our model

The focus of our model is the part of memory that
functions as short-term storage for intermediate results
of visual perception, analogous to Baddely’s ‘visuospa-
tial sketchpad’. Qur version of visual working memory
stores memory images of visual objects that are mean-
ingful and relevant in the context of the current task. In
the case of geometry diagrams, these objects are angles,
line segments, figures (e.g. triangles) and text. The
mechanism for adding memory images to visual mem-
ory is oculomotor scanning. The mechanism for forget-
ting is interference between the object being scanned
and the objects already in visual memory. A detailed
description of the model follows.

2. The oculomotor geometrical reasoning engine
(OGRE)

The model consists of definitions and axioms about
fixation duration, scanpaths and visual memory.

2.1. Axioms about fixation durations

The simplest assumption for the distribution of fixa-
tion durations is that the execution time of each fixa-
tion is a random variable independent of past
processing or present perceptual state. If this assump-
tion were true, fixation durations would be exponen-
tially distributed. This is obviously not the case,
because distributions of fixations observed in a wide
variety of tasks are not maximum near 0, but reach the
peak after about 200 ms, and then decay approximately
exponentially.

A slightly more complex model for fixation durations
has been used in the past (Suppes, Cohen, Laddaga, &
Floyd, 1983; Suppes, 1990). This model assumes that
each fixation is composed of some number of low-level
eye control instructions. There are no proposed physio-
logical or psychological processes that correspond to
‘eye-control instructions’. These are simplified theoreti-
cal constructs that help model the data. The model
assumes that during each fixation, n low-level eye con-
trol instructions are executed and that the execution
times of eye-control instructions are identically dis-
tributed. Furthermore, it is assumed that execution
times of eye-control instructions are exponentially dis-
tributed and that for each fixation n=1, or n=2.
Under these assumptions, the distribution of fixation



1564 J. Epelboim, P. Suppes / Vision Research 41 (2001) 15611574

durations can be described as the sum of two distribu-
tions: an exponential and a convolution of two expo-
nential distributions with the same parameter.
Although this model provided a reasonable fit for fixa-
tion durations observed while some subjects performed
column arithmetic (Suppes, Cohen, Laddaga, & Floyd,
1983), it does not fit the present data, because of the
shortage of short fixation durations.

Here, a different model is proposed. It uses the
following axioms:

Axiom FDI1. Execution times of individual eye-control
instructions are independent, identically distributed,
memoryless, and, therefore, exponentially distributed.

Axiom FD2. In geometrical problem solving, the number
of eye-control instructions per fixation, n(s), is constant
Jor a given subject s.

Axiom FD3. The eye-control instructions are performed
sequentially: instruction i+ 1 begins immediately after
instruction i terminates.

These axioms describe fixations as a Poisson process
— a renewal process in which the time between recur-
ring events (here onsets of eye-control instructions) is
exponentially distributed. In the case where all expo-
nential distributions have the same parameter, such as
assumed here, the total time is distributed as the sum of
n = n(s) exponential distributions, which is the gamma
distribution (see Luce, 1986, p. 500, for a derivation).
Its probability density function, f,(¢), is:

/lntn — 1e — At
O T M
where n is the number of theoretical eye-control instruc-
tions, and 4 is the parameter of the exponential
distributions.

A different type of a renewal process, which could be
used to model the fixation duration data, is a parallel
process, in which n events, whose execution times are
identically and exponentially distributed, are executed
in parallel. The total time of the process is the time
when all events are completed. One type of such pro-
cess can be modelled by an Extreme Value, Type I
distribution (Luce, 1986, p. 503). The Gamma distribu-
tion and the Extreme Value, Type | distribution are
similar in shape and tend to provide comparable fits to
the data. There are theoretical difficulties in differenti-
ating between parallel and serial models of reaction
times when no physical limits on processing speed can
be set. These difficulties have been studied and reported
by Townsend and colleagues (e.g. Townsend &
Thomas, 1994). In this study we will limit our analysis
of the distribution of fixation durations to the serial
model described in Axiom FD3.

2.2. Definitions for scanpaths

A scanpath is a sequence of eye movements used to
solve one geometry problem. It can be written as:
JispSrs s o0 Jus,» Where f; is the ith fixation (a period
during which gaze remains in the same location on the
diagram), and s; is the ith saccade (a ballistic eye
movement that brings gaze to a new location) in the
sequence.

Duration of fixation f; is the length of time between
the offset of saccade s,_, and the onset of saccade s,.
Likewise, duration of saccade s, is the length of time
between the offset of fixation f;_, and the onset of
fixation f,.

Each diagram is a configuration of geometrical ele-
ments (g)-angles, line segments, regions (e.g. inside
circles or triangles), and text (all explanatory text in-
cluded with the diagram is treated as a single element).
The gs are indexed as follows: line segments —
Sy, .0y 8y angles — ay, ..., a,,, regions — ry, ..., ry, text
— t. The angle in question (marked with a ‘?” on the
diagram, see Fig. 1) is treated separately from the other
angles and labeled g. Since the problem solver’s visual
field is not restricted to the diagram, it is useful to
introduce another geometrical element, labeled ‘o’, for
other, which corresponds to any location outside of the
diagram.

Each fixation, f; is associated with exactly one g,
which we note as fi(g).

A scan, Fy(g), is a sequence f;,, fi 1, Sig toeeesSny o
which all fixations are associated with the same geomet-
rical element g. We introduce a second subscript on f,
namely, f;;, to show that this fixation is the ith fixation
of scan F,

2.3. Axioms about visual memory

To begin with, visual working memory (V) is a set of
registers for storing memory images, I(g), of geometri-
cal elements. The contents of V are not ordered.

Axiom V1. All registers in V are quickly filled with
images from the visual presentation of the new problem.

Axiom V2. The size of V, M, is constant for a given
subject and problem.

We show later that M varies with subject and prob-
lem, but we do not test directly our assumption that M
is constant for a given subject and problem. This is not
practical with our data set. Consequently, we cannot
empirically distinguish between the axiom as formu-
lated and the assumption that even for a given subject
and problem, M is a random variable with positive
variance. From the standpoint of this latter assump-
tion, the estimates used later depend on the mean
values of M for given subject and problem.
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Axiom V3. During each scan F,(g) the image of g, 1(g),
is added to V.

With this apparatus, but before making more formal
assumptions, we sketch the time sequence of events,
both observable and unobservable. On the other hand,
we restrict ourselves to the visual and oculomotor
processing and exclude in our formal framework the
details of mental computations and of the generation
and production of the running verbal protocol. We do
use the protocol to provide confirming evidence about
the visual processing, as will be evident later.

Here is the time-sequence sketch, where:

V; State of visual memory on scan F,

s Saccade,

gr Geometrical element that has been previously
scanned and is now rescanned,

g~ Geometrical element that is new, i.e. it is being
scanned for the first time during this problem,
or after many scans since it was last in visual

memory.

The diagram below starts with a memory state, V),
and a fixation, f;,(g) of element g. The arrows (=)
show transitions between states and events. The third
step in the diagram shows all possible outcomes follow-
ing the saccade, s.

0 fir (@ =V
(@) fi.;+100) =V,a=V

(iii) fl,j+l(gR)
(iv) fl,j+1(gN)

Vit (g)=s=
= Vj+1 # I/j

()

Keeping this time sequence in mind, here are the
additional axioms on visual working memory and
scanning.

Axiom V4. At the end of fixation f;;(g), a saccade s

occurs and then one of the four possibilities shown in Eq.

(2) is realized on the next fixation:

l. fi+1/g)€F;, — a fixation of the same g and therefore
no change in scan F;

2. fij+1(0)€F;, — a fixation outside (0) the diagram
and no change in memory, V, =V,

3 fiye1(@R)EF, ., and I(gx)¢ V; — rescan of gy.

4. fi;1(gn)€EF, . and I(gy)¢V; — scan of new ele-
ment gy.

This axiom implies that if the next fixation is on an
element that is different from the currently fixated
element, two things happen. First, a new scan begins,

and second, the content of memory is changed. The
exception is when the fixation is outside the diagram
(0), in which case a new scan begins, but the contents
of memory remain the same. Note, that once the
scanned element enters visual memory, content of mem-
ory remains the same for the duration of the scan.

Axiom V5. In cases (iii) and (iv) of Axiom V4, visual
memory is changed:

(i) Vo =V,—1(g")+1(gr). That is, I(gg) is added
to the contents of V, after another image I(g') that was
already in V; is overwritten.

av) V1=V, —I1@g)+1(gy). Same as (iii) just
above, except that the added image is of a new element,
gn» that has not already been scanned.

Axiom V6. Let M be the integer size of V,. If an image
I(g) is added to V;(I(g)¢V, & 1(g)eV,, ), then the
probability of selecting an image in V; to be overwritten
has a uniform distribution on the images in V.

Axiom V7. If I(g) is overwritten on scan F;,,, it is
scanned again on the following scan F; , , with probability
1 — ¢, such that 1(g)eV; & I(g)¢V,,, & I(g)eV;,,.

These axioms can be summarized intuitively as fol-
lows: During each scan, the memory image of the
element being scanned is added to ¥V, and another
element that was already in V is overwritten. This
scheme maintains a constant number of images in V
during a given problem, and we assume that V is filled
at the beginning of the problem (Axiom V1).

The next definition ties the functioning of V to a
measurable quantity in eye-movement data.

Let g be the element scanned on F; and again for the
first time on F;,,. Then the number k is the rescan
time. Since consecutive scans cannot be associated with
the same g, k > 2.

Axiom V7 implies that a memory image of an ele-
ment g is added on the scan following the scan during
which it was overwritten, with probability 1 — &, which
is close to 1 for small & Note however, that occasion-
ally (with probability ¢), an element will not be res-
canned immediately after being overwritten, perhaps
because g is no longer needed for the current mental
operation. It may be rescanned much later, if it be-
comes needed for a different mental operation. We use
these very long rescan times to estimate &.

In order to generate the theoretical distribution of
rescan times, it helps to produce the following probabil-
ity tree. We introduce new notation:

R(g) — g is rescanned on scan F, This implies

g¢V,_, & geV, Note that a rescan R; is just a

special case of scanning, so Ri(g)= F;(g) if g had

been scanned earlier in the problem.
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O(g) — g is overwritten on scan F, This implies
Vi & g¢ V.

The bdr of O or R implies negation. Thus O, ,(g)
means that the image I(g) was not overwritten during

scan F; |
Rj+2(g)
Oj+l(!i)<
Riv2(9)
Rj3(g)
1+2(9)<
-R,
0,06 ’”Z;
+3
]+2(9)

Oj+3(9) (3)

Based on this tree, it can be seen that if g was
scanned on scan F; then the probability of its being
rescanned on scan F iy is (1 —1/M)(Q/M)(1 — &) Using
this tree it is easy to show that the distribution of
rescan times is given by Eq. (4). To simplify notation,
we omit the argument g and write R; and O, to mean
R;(g) and O/(g).

P(R, +j|0k~ 1+ R,_, +js 0k—2+p T R1‘+ 1 Rj)

1Y 1

The estimate of visual memory size is the value of
parameter M that produces the best fit of Eq. (4) to the
eye-movement data, where M can vary for different
subjects and problems.

2.4. Approximate independence of path

Axiom IP. Within ¢, the probability of a scan F(g))
depends only on the immediate prior scan, F; (g, ;)
and contents of visual working memory, V, . The rare
events with probability ¢ can depend on the distant past.

What we may prove from this last axiom and the
earlier axioms is that within & the sequence of random
variables V,, F,, V,, F,,..., V,, F,, is a first-order
Markov process. This means that what happens on
scan n depends only on what happens on scan n—1,
not on any earlier scan. This independence of scans
before n—1 is what justifies the description of this
axiom as one about independence of path. An example
of a violation of this axiom, and the next simplest case,
is if the sequence was a second-order Markov chain,
which would mean that V,, F,, depended not only on
Vao_1, F,_,butalsoon V, _,, F,,_z. Our mode] would
have to be much more complicated to account for this
dependence.

We now turn to the experiment.

3. The experiment
3.1. Method

3.1.1. Data collection

Subjects. Three subjects participated. Two of the
subjects (Experts, ME and MS) were skilled at solving
geometry problems. They had graduate training in
physics, and encountered problems similar to those
used in the experiment in their professional life. The
third subject (Non-expert, RS) had last solved geometry
problems in high school, over S0 years prior to the
experiment. He reported that he had little idea as to
what to do on most of the problems, but tried hard to
apply the little geometrical knowledge that he had to
achieve a solution.

Problems. Each problem consisted of a diagram in
which some angles were labeled with letters and numer-
ical values. Some problems also contained brief text
stating initial conditions. For each problem the subject
was asked to find the value of the unknown angle,
labeled with a “?”. Two of the problems are shown in
Fig. 1. Each subject solved 10 problems.

Problems were presented on a high-quality LCD
screen of a laptop computer. Subjects adjusted their
distance to the screen to ‘a comfortable reading dis-
tance’. As a result, one character subtended 22-29 min
of arc, and the whole screen was 17-22° wide, and
12-18° high. The area of the problem never exceeded
0.8 of the screen in width and 0.9 of the screen in
height. The head was stabilized from above. Viewing
was monocular, with the non-viewing eye patched.

Eye movement recording. The Maryland Revolving-
Field monitor (MRFM) was used to record horizontal
and vertical eye orientations of the subjects. This ap-
paratus uses sensor-coil/magnetic-field technique and
phase detection on both meridians. The accuracy of the
instrument is better than 1 min of arc. The sampling
rate was set at 488 Hz (effective bandwidth = 244 Hz).

The MRFM is capable of measuring accurate and
precise gaze (line-of-sight in space) with seated, but
otherwise unrestrained subjects. However, the head
movements of subjects were restricted in this experi-
ment, to simplify data processing. This was done with
the aid of a bicycle helmet attached to the frame of the
MRFM. This method of restraining the head, in con-
trast to more conventional bite board methods, allowed
the subjects to talk while they were solving problems
(see Epelboim, Booth, & Steinman, 1994 for a more
detailed description of the MRFM apparatus used in a
similar setup).

Procedure. Calibration and problem trials alternated.
During calibration, the subjects fixated each of 9 pluses
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(+) that were presented in a 3 x 3 grid on the screen.
Subjects fixated each + for 2 s and made a saccade to
the next cross when prompted by a beep.

At the end of a calibration trial, a fixation +
appeared at the upper left corner of the screen. The
subjects fixated the +, and then started a trial, when
ready, by pressing a button. The problem appeared and
the subject started solving it. When he was finished, the
subject pressed the same button again, after which the
screen was cleared, and a fixation + appeared. The
subject pressed the button to start the next calibration
trial. There was a time limit of 5 min for each problem.

Subjects were not allowed to write or sketch any-
thing, but the problems were selected to be simple
enough to solve mentally. Subjects were asked to rea-
son aloud, and their speech was recorded.

3.1.2. Analyses of data

Saccade detection. Saccades were detected with a
computer program that uses an acceleration criterion.
The criteria were established empirically for each sub-
ject by looking at eye movement traces with saccades
flagged and adjusting the criteria until all the saccades
were detected. Fixations were defined as periods of
relatively stable gaze between two saccades.

Line s is tangent to circle O at point B
OB = AB

Find the angle chord AB makes with line s

s

Fig. 1. Examples of geometry problems used in this study.

Blinks were detected manually. Fixations that were
interrupted by a blink and did not contain a total of 50
ms of stable gaze were not used in the analyses. The
frequency of blinking varied among subjects. Fewer
than 1% of fixations were discarded for RS, < 3% for
MS and < 7% for ME.

Assignment of fixations to geometrical elements. The
locations of fixations on the diagram for a given prob-
lem were calculated using data from the calibration
trials before and after that problem. The precision and
accuracy of this location on the diagram was better
than the size of one character in the accompanying text.

Each fixation was assigned to a geometrical element
of the diagram. Fixations that fell more than 2 charac-
ter-widths outside the diagram or text were labeled o,
for other.

Text that accompanied the problem was considered a
single element (not broken into words). A more realistic
treatment of text would require a model of reading to
be embedded into the model for geometry. At this
stage, the simplification of considering text a single
element seems reasonable, especially since text that
accompanied the diagrams was kept brief.

Note that the assignment of fixations to geometrical
elements depended on the definition of the borders
between elements, which, in some instances, had to be
selected subjectively. In order to assess the amount of
uncertainty in assigning fixations to geometrical ele-
ments, 1/3 of all fixations were assigned to elements by
two observers. The agreement between the two sets of
assignments was > 95%.

3.2. Results

3.2.1. Global analysis of scanpaths and verbal protocols

Before testing specific axioms, it is useful to take a
global look at scanpaths and their relationship with
verbal protocols of the subjects. This analysis will show
that eye movements do not simply reflect the protocol,
but carry additional information that can be useful for
modeling cognitive and perceptual processes used to
solve the problem. The following example of a subject
solving a problem is a representative case study for the
process.

Consider ME’s protocol for the problem in Fig. I:

Line s is tangent to circle O at point P. OB = AB,
find the angle chord AB makes with line s. Ok,
well... so, the unknown angle is the complement of
angle ABO. Ah, so... OB = AB, ah... ok, that means
that a triangle formed by connecting points O and 4
would have to be an isosceles triangle. Ah, in fact it
would have to be an equilateral triangle. So that
means that the angle ABO is 60° and the unknown
angle is 30°.



Line s is tangent to circle O at point B
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‘““Triangle ABQO is isosceles ... and equilateral”’

Fig. 2. Distributions of fixations during the four stages of the protocol for subject ME. Each symbol represent 1 fixation. Circles show fixations
shorter than 300 ms, squares show fixations 300—600 ms in duration, and diamonds show fixations over 600 ms long. The number inside each

symbol shows the sequential number of that fixation in the scanpath.

This protocol was used to dividle ME’s path to
solution into 4 stages. Fixations that took place during
each of the stages are shown in Fig. 2. It is clear that as
ME talked about different parts of the diagram, he
tended to fixate the relevant elements more frequently
than other elements.

An interesting observation can be made about ME’s
eye movements in Stage 4. Here, ME made many
fixations inside the triangle ABO, which is central to
solving the problem. This triangle, however, is not
completely shown on the diagram — only sides AB
and BO are actually shown. But ME constructed the
triangle mentally and scanned inside this partially visu-
alized figure as he solved the problem. The other expert
subject, MS, also scanned this imaginary triangle. The
detection of the triangle was not simply a perceptual
process (Gestalt closure, for example), but reflected the
higher-level reasoning about the problem. The non-ex-
pert, RS, neither mentioned triangle ABO in his proto-
col, nor scanned it. Fig. 3 shows this difference in
scanning patterns between the experts and the non-ex-
pert. This pattern of differences was typical. All three
subjects started working on each problem by reading
the text, if any, and referring to the relevant elements
on the figure (Stage 1, in Fig. 2). After this brief
information gathering stage, the experts often looked at

constructed elements, such as the triangle ABO in ME’s
Stage 4.

A closer examination of locations of scans that took
place during each utterance, tabulated in Table I,
shows that ME did not simply scan the elements as he
mentioned them. His scanpath was very redundant
— he kept returning to elements already seen. This
redundancy, which was typical for all subjects on
even the simplest problems, was not present in the
protocol.

Does the oculomotor redundancy reflect operation of
limited visual working memory that requires constant
refreshing, as the OGRE model proposes, or do sub-
jects simply shift gaze within the diagram to give the
eyes something to do while the problem is being solved
internally, without the need for continuous visual in-
put? This question can be explored by looking at what
happened when the subjects in this experiment per-
formed mental arithmetic, as they occasionally had to
do in order to solve the problem. The mental arithmetic
process should not require visual input. If the purpose
of the fixations is to acquire or update visual informa-
tion about the diagram that is needed for the current
mental operation, then the scanning during mental
arithmetic should be different from the pattern ob-
served during the rest of the problem solving. It should



either be unrelated to the structure of the diagram, or
limited to the areas that contain the numbers that are
being processed.

Most of the arithmetic needed to solve the problems
was simple enough to be solved during one or two
scans. Occasionally, however, the subjects got stuck on
a particular mental arithmetic operation, for example
adding the sizes of two angles and subtracting the result
from 180 to find the third angle. When that happened
the eye movement pattern was obviously distinct from
the normal pattern. The subjects continued to shift gaze
at the same rate, but instead of looking from one
element to the next, they either looked outside the
diagram (up at the ceiling or or down at their shoes, for
example), or repeatedly fixated a region near the center
of the screen. Two typical examples of the eye move-
ment pattern during mental arithmetic are shown in
Fig. 4. When mental arithmetic was not being per-
formed, the subjects made very few fixations outside of
the diagram (fixations of type ‘other’), and rarely re-
mained within the same region for more than 3 fixa-
tions (< 3%).

Figs. 2, 3 and 4 show that global eye-movement
patterns of the subjects depended to some extent on the
stage and quality of their reasoning process, as deter-
mined by the protocol. Although there was no system-
atic relationship between individual scans and
concurrent utterings, the evidence from mental arith-
metic suggests that the repetitive scanning of diagram

elements served an important role in acquiring and
updating visual information about the diagram.

Next, we examine in some detail the axioms of the
OGRE model, starting with axioms about fixation
durations.

3.2.2. Distribution of fixation durations

Axiom FD3 proposes a serial model of fixation dura-
tion, in which a fixation terminates when n eye-control
instructions are completed. The assumption is that the
execution times for the eye-control instructions are
identically and exponentially distributed. This describes
a Poisson process, which is modeled by a Gamma
distribution. Fig. 5 shows Gamma probability density
functions fitted to the histograms of fixation durations
of the 3 subjects. Statistically, the fits are good (y? < 1)
although not perfect. The best maximum likelihood fit
value for n was 3 for all subjects. The values for 1 were
very similar for the 3 subjects: 0.0098 for ME, 0.0090
for MS and 0.0084 for RS.

3.2.3. Statistical properties of sequences of scans

In order to test the independence-of-path assumption
of Axiom IP for sequences of g’s scanned, y’-tests were
used to determine the Markov order of these sequences
(Anderson & Goodman, 1957). A separate y? was
calculated for each problem and each subject. First the
hypothesis that the sequence has no dependencies (zero-
order process) was tested against the hypothesis that

> Expert MS o
s B coaloB s @
£y ©

o {2 @ﬁ@ -nLT,']EE .

Non-expert RS

a[@lra1d ) @ poi® »
P
Find EPCIQ?

.@@

Fig. 3. Comparison of fixation distributions of two expert subjects and the non-expert. All fixations for each subject are shown.



Table 1

Scans and utterances for subject ME while he was solving the

problem shown in Fig. 1 (top)*

Fixations Scan Utterance

36 ‘Line s 1s’

7-9 ‘tangent to ‘Line s is tangent to circle’
circle O’

10 LB

11-12 ‘circle O’

13-14 (6]

15-18 ‘circle O ‘O
at point B’

19-20 Inside circle—» £ B ‘at point B’

21-25 ‘OB = AB’ ‘OB’

26-43 LB5ASO5s ‘equals AB’ (35-40)
— toward text
L B—AB

44-50 ‘find the angle ‘Find the angle chord AB’
chord B makes’

51-59 (B-OB—- /B
—- A - AABO
/7> /B

60-62 ‘AB makes with ‘makes’
line’

63-69 AABO-0O—-0OB ‘with line’
sA->A->/Bos

70-72 ‘with line s’

73-78 BO—s— £? T (7
— LB

79-90 AABO - A ‘ok, well’ (81-82)
- AABO

91-97 LBos—> /B ‘the unknown angle is the’
—+AB—-> /B

98-101 O-s5s—-> AABO ‘complement of angle ABO’
- BO

102-106  ‘tangent to circle O’

107-115 LB— (7155
- /B—->AB

116-119 ‘OB = APB’

120-123 L B—->0OB->s

124-131 AB—-s—0OB ‘OB equals AB’ (125)

132-140 AB- AABO ‘ah, ok!
—AB

141-147 AB- /B—-AB
- /B->AB—-A
-0

148-157 AABO - AB ‘triangle formed by connecting

points’

158-164 BO -+ AABO ‘O and A’
—-BO

165-173 AABO- /B ‘would have to be an isosceles
—-+BO—- /B triangle’
-+ AABO- /B

174-183 BO- /B ‘ah! In fact it would have to be
- AABO—- /B an equilateral triangle’
—+AB->A->5-0

184-189 £ B —outside figure ‘so that means that angle B is

60° and the unknown angle is
30

2 Scanpaths for the four stages (separated by horizontal lines in the

table) are shown in Fig. 2.

the sequence can be modeled as a first-order Markov
chain. The y? values were calculated for each problem,
and were statistically significant (P < 0.01) for all prob-
lems for subjects ME, for 8 out 10 problems for subject
MS and for 8 out of 10 problems for subject RS. This
outcome means that the prediction for g of scan F; can
be improved significantly if g of scan F;_; is taken into
account, for most of the problems.

First-order vs. second-order dependence was tested
next. In this case none of the y? values were significant
(P >0.1). This means that there is no statistically sig-
nificant improvement for predicting the state at scan F;
if g’s of two previous scans are taken into account, as
opposed to just one. In short, the element g scanned on
each scan depends solely on the g of the scan that just
precedes it, and the sequences of scans can be modeled
with a first-order Markov process. This analysis is
consistent with Axiom IP even though the test could
not use the necessarily unobservable contents of mem-
ory, V. The results are summarized in Table 2. As
remarked after the statement of Axiom IP, this negative
result for second-order effects supports the strongly
simplifying assumption of path independence. A posi-
tive result would have forced us to introduce a second-
order theory, necessarily much more complex.

We also applied the same y? tests to sequences of
individual fixations, as opposed to scans. The results
are also summarized in Table 2. As with scans, fixations
for all but three of the problems (two for MS and one
for RS) could be modeled by a first-order Markov
chain.

3.2.4. Estimates of the size of visual working memory

Estimates of ¢. According to Axiom V7, ¢ is the
probability that g is overwritten on scan F; and is not
rescanned on scan F;, . This g may be rescanned much
later, resulting in a very long rescan time. In other
words, suppose an element is scanned on scan F; and
the next time it is scanned on scan F; , ,, and k is large.
It is not likely that this element stayed in memory for k
scans and was rescanned because it was overwritten on
scan F,, , . It is more likely that it was overwritten
some time during the k scans, and was not rescanned
after being overwritten. Given this reasoning, we esti-
mated ¢ by looking at the extreme part of the tail of
histograms of rescan times.

A separate estimate of ¢ was determined for each
subject by visually examining the histograms of rescan
times (the number of scans between consecutive scans
of the same g), summed over all the problems (see Fig.
6). We used the cutoff points of 70 for ME, 55 for MS
and 45 for RS. Based on these cutoffs, the estimates of
¢, calculated as the number of rescan times greater than
the cutoff divided by the total number of rescans, were
0.008 for ME, 0.011 for MS and 0.009 for RS. To give
a sense of the variability of ¢ as a function of cutoff
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Fig. 4. Examples of eyec movement patterns during mental arithmetic
for subjects ME (left), and MS (right). All fixations for each problem
are shown. The high concentration of fixations in the center of the
screen for ME, and the fixations above the display for MS, occurred
while the subjects were performing mental arithmetic. The rest of the
fixations represent the normal problem-solving pattern.

point, for subject ME, a cutoff point of 60 results in
£¢=0.017, and a cutoff point of 80 results in ¢=0.004.

Estimates of M. Axiom V2 states that M is constant
for each subject and problem. Our initial evaluation of
M assumed that M is constant across problems, but
may vary among subjects. This assumption allowed us
to pool the data over all the problems, resulting in
more data points and more robust fit. It also gave a
sense of variability of average M among the subjects.

0.25
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0.20 | 4

015 |- B
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o 800 file]e]
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Subjoct MS, N=2170

[T

a00
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Fig. 5. Fits of the Gamma probability density function to the
distributions of fixation durations. Bin size in the histograms is 50 ms.

The M parameters that produced the best fit of Eq.
(4) to the whole set of data (summed over all problems)
are: 5.5 for ME, 4.0 for MS, and 4.1 for RS. The
estimates of M were not sensitive to the exact value of
&, as long as ¢ was of the order of 0.01 or less. Curves
fitted to the histograms of rescan times summed over all
the problems are shown in Fig. 6.

Eq. (4) was also fitted to the rescan time histograms
calculated for individual problems. The results are
shown in the rightmost column of Table 2. Consistent
with Axiom V2, there was some variability in estimates
for M for individual problems. ME’s estimates ranged
from 4.3 to 8.4 (mean = 5.8, SD = 1.4)-MS’s estimates
ranged from 2.4 to 5.3 (mean=4.0, SD=0.9); RS’s
estimates ranged from 2.4 to 7.8 (mean=4.7, SD=
1.6). All fits were statistically reliable (3 < 1).

The values of M estimated for individual problems
were smaller than and did not correlate with the num-
ber of different g’s scanned in a given problem (p?=
0.1 for ME, 0.1 for MS, and 0.22 for RS). This
supports the proposition that the variability of the size
of visual working memory was independent of problem
complexity, as measured by the number of geometrical
elements. The estimates M fell somewhat short of the
‘magic number’ 7 + 2. Twelve of the 30 estimates are
within the range. Twenty-five of them are within the
range S + 2.

4. Discussion

A model-theoretic approach, based on eye movement
data, was used to estimate a cognitive variable, viz. the
size of visual working-memory. The use of eye move-
ments made it possible to measure this variable during
a realistic, complex cognitive task. All prior quantita-
tive estimates of the capacity of visual working-memory
have been based on simpler memory tasks, for example,
recall of a series of objects presented on a display.

Our estimates of the size of visual working memory
are similar to some of the prior estimates obtained
under a variety of conditions (e.g. Walker et al., 1993;
Lachter & Hayhoe, 1995). They are somewhat lower
than the range of 7 + 2 (Miller, 1956). They support the
idea that although the visual memory size is relatively
small, more than just one item is stored, as has been
postulated by some theories (e.g. Broadbent & Broad-
bent, 1981; Ballard et al., 1995). Indeed, we are skepti-
cal that the kind of complex problem solving in
geometry that makes substantial use of a diagram can
be adequately modeled psychologically with a visual
working memory of size one. On the other hand, it is
likely that the range of estimates of the size of visual
working memory will vary even more as models like the
one proposed here are applied to a wider variety of
visual tasks. An important problem for future theory is
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Table 2
Summary of analyses for individual problems®

Problem  Trial length (s) Number of g’s Number of Markov order for Number of scans Markov order Estimate of M
scanned fixations fixations for scans
1 86.5 13 165 1 134 | 5.7
2 74.4 10 137 1 102 1 5.8
3 102.3 15 205 1 158 1 8.4
4 52.7 16 130 1 98 1 5.7
5 60.4 14 185 t 147 1 8.0
6 111.2 18 240 1 183 1 43
7 24.7 8 54 1 40 1 5.8
8 73.7 12 125 1 99 | 4.8
9 35.8 21 109 1 95 1 5.0
10 106.1 19 251 1 187 1 43
Overall 1601 1243 5.5
1 39.5 13 91 1 61 0 43
2 62.5 10 108 0 87 1 5.0
3 66.8 12 123 1 75 0 4.1
4 74.6 14 192 1 144 1 4.7
5 15.5 7 32 1 19 1 3.0
6 75.7 15 176 1 122 1 2.4
7 16.1 7 33 I 24 1 3.2
8 41.6 10 114 1 78 1 3.5
9 242 14 65 1 47 1 44
10 829 15 244 1 185 1 5.3
Overall 1180 842 1 4.0
1 43.6 12 80 1 54 0 2.4
2 42.7 7 75 1 54 1 3.1
3 29.0 12 65 1 43 1 7.8
4 46.4 14 114 1 82 1 5.2
5 51.8 11 129 1 83 1 5.7
6 39.7 14 93 1 67 1 6.9
7 21.3 6 46 0 36 0 44
8 81.8 11 170 1 93 1 3.6
9 36.2 10 91 1 68 1 38
10 26.7 9 81 1 54 1 3.8
Overall 944 646 4.1
* See text.

to model in detail the interaction between the nature of
the task and the size of visual working memory needed
or actually used.

The OGRE model, unlike most other models of
cognitive processes based on eye-movement data, em-
phasizes the role of stochastic processes in the control
of eye movement. This emphasis does not imply that
higher-level cognitive processes do not have influence
over eye movements. On the contrary, as can be seen in
Fig. 3, which compares scanpaths of expert and non-ex-
pert subjects, the inferencing process has a large effect
on the global eye-movement pattern. According to
OGRE, however, the inferencing process does not con-
trol gaze directly. It determines what visual information
is required for the current computation and delegates
the details of placing this information in visual work-
ing-memory, and maintaining it there, to a lower-level
visuomotor agent. Inferences are made at a higher level
with the agent simply being required to act efficiently

when required to perform one or another visuomotor
action. A simple stochastic process is probably the most
efficient solution for freeing the more intelligent infer-
encing process from dealing with details of oculomotor
control. This dichotomy between planning and doing is
well accepted in the literature on motor control (see
Sternberg, Monsell, Knoll, & Wright, 1978 for a gen-
eral discussion, and Zingale & Kowler, 1987 for appli-
cation of this dichotomy to eye-movement control).
The assumption of a dichotomy between mental op-
erations and oculomotor control must also assume that
visual working-memory, with a capacity greater than
one item, must be capable of storing information ob-
tained during the prior few fixations and make this
information available to the higher-level cognitive pro-
cess. This assumption, however, is not convenient for
making deterministic models of cognitive processes on
the basis of eye-movement data, because it does not
allow a simple mapping between any individual eye
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Fig. 6. Histograms of rescan times. Bin size is 1 scan. Plots of Eq. (4)
with the best-fit parameter M are shown on each graph.

movement and a specific mental operation. Many mod-
els assume direct cognitive control over eye movements
and do not consider the contents of visual working-
memory. This assumption is unfortunate because it
permits unrealistically simplistic models.

The OGRE model could be modified and extended to
apply to other cognitive tasks that use visual informa-
tion. For example, it seems almost certain that visual
working memory is used during reading. This hypothe-
sis would naturally lead to taking clauses, or short
phrases, as possible units of reading, instead of just
single words, as is the case in most recent eye-move-
ment based theories of reading. Distributions of regres-
sions to previously fixated words could be used to
estimate the size of visual working memory used in
reading in the way distributions of rescan times were
used to make this estimate for geometry.
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